On Context-Dependent Clustering of Bandits

نویسندگان

  • Claudio Gentile
  • Shuai Li
  • Purushottam Kar
  • Alexandros Karatzoglou
  • Giovanni Zappella
  • Evans Etrue
چکیده

We investigate a novel cluster-of-bandit algorithm CAB for collaborative recommendation tasks that implements the underlying feedback sharing mechanism by estimating the neighborhood of users in a context-dependent manner. CAB makes sharp departures from the state of the art by incorporating collaborative effects into inference as well as learning processes in a manner that seamlessly interleaving explore-exploit tradeoffs and collaborative steps. We prove regret bounds under various assumptions on the data, which exhibit a crisp dependence on the expected number of clusters over the users, a natural measure of the statistical difficulty of the learning task. Experiments on production and real-world datasets show that CAB offers significantly increased prediction performance against a representative pool of state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Clustering Bandits for Recommendation

We investigate an efficient context-dependent clustering technique for recommender systems based on exploration-exploitation strategies through multi-armed bandits over multiple users. Our algorithm dynamically groups users based on their observed behavioral similarity during a sequence of logged activities. In doing so, the algorithm reacts to the currently served user by shaping clusters arou...

متن کامل

Online Context-Dependent Clustering in Recommendations based on Exploration-Exploitation Algorithms

We investigate two context-dependent clustering techniques for content recommendation based on exploration-exploitation strategies in contextual multiarmed bandit settings. Our algorithms dynamically group users based on the items under consideration and, possibly, group items based on the similarity of the clusterings induced over the users. The resulting algorithm thus takes advantage of pref...

متن کامل

Context-Aware Bandits

We propose an efficient Context-Aware clustering of Bandits (CAB) algorithm,which can capture collaborative effects. CAB can be easily deployed in a real-world recommendation system, where multi-armed bandits have been shown toperform well in particular with respect to the cold-start problem. CAB utilizes acontext-aware clustering augmented by exploration-exploitation strategies...

متن کامل

Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition

Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...

متن کامل

Online Clustering of Contextual Cascading Bandits

We consider a new setting of online clustering of contextual cascading bandits, an online learning problem where the underlying cluster structure over users is unknown and needs to be learned from a random prefix feedback. More precisely, a learning agent recommends an ordered list of items to a user, who checks the list and stops at the first satisfactory item, if any. We propose an algorithm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017